
Mathematics Methods

Unit 3

Rectilinear motion

1. Rectilinear motion

Summary:

Where,

s: displacement

v: velocity

a: acceleration

(a) Displacement

Displacement (S) of a particle: The distance measured from a fixed point, O, in a specific direction

In layman's term, displacement is how far the particle is from the starting point.

*Displacement is represent by S.

Formula:

$$S = \int_{b}^{a} v \ dt$$

Example 1:

The velocity of a moving particle is equated by $v=2t^3+3t^2-2t$. Find the displacement of particle after 5 s.

Example 2:

A particle accelerates at $5~ms^{-2}$ which is constant along the s-axis. It has a velocity of $-1~ms^{-2}$ at the start of the journey. Find the displacement of the particle within the range of time, $2 \le t \le 4$.

(b) Distance

Distance travelled by a particle: Total length of the path travelled by a particle from its original position to another position.

In layman's term, distance travelled is how far the particle has travelled.

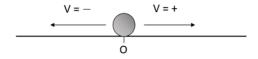
Formula:

$$S = \int_{b}^{a} |v| \ dt$$

Tips:

Sketch the graph of velocity function.

Example 1:


The velocity of a moving particle is equated by $v = 2t^3 + 3t^2 - 2t$. Find the total distance travelled by particle from its origin point till t = 1s.

Example 2:

A particle accelerates at $5~ms^{-2}$ which is constant along the s-axis. It has a velocity of $-1~ms^{-2}$ at the start of the journey. Find the distance travelled by the particle from the origin to when t=2~s.

(c) Velocity

Velocity (v) is the rate of change of displacement.

V = 0 (stops instantaneously)

Formula:

$$v = \frac{ds}{dt}$$

$$v = \int a \, dt$$

Example 1:

The velocity function of a moving particle is given by $v(t) = e^{\sin 2t}$, find the velocity of the particle at t = 2 s. Do not evaluate your answer.

Example 2:

A moving particle travells along a straight line, passing through a fixed point at velocity $12\ ms^{-1}$. Its acceleration, $a\ ms^{-2}$ is given by $a=4t^5+9$ where t is the time in seconds after passing through O. Find the velocity of the particle when t=5.

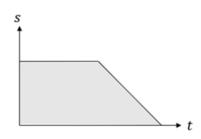
(d) Acceleration

Acceleration is defined as the rate of change of velocity.

Formula:

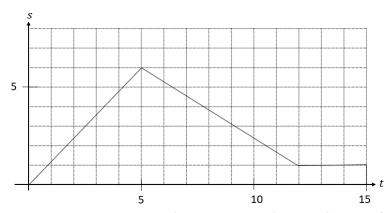
$$a = \frac{dv}{dt}$$
 or $a = \frac{d^2s}{dt^2}$

Example 1:

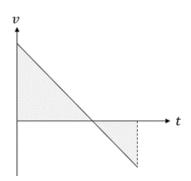

A moving particle travells along a straight path and passes through a fixed point. Its velocity, $v\ ms^{-1}$ is given by $v=3t^2+6t$. Determine the acceleration of the particle when t=2.

Example 2:

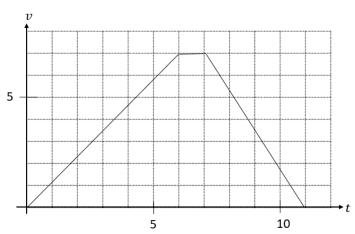
The velocity of a moving particle can be equated by $v(t) = cos\left(\frac{\pi t}{3}\right)$. Find the acceleration of the particle when t=3 s.


2. Graphs of rectilinear motion

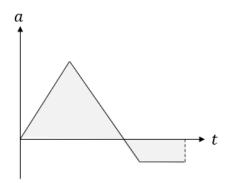
(a) Displacement-time graph


Gradient of graph: velocity, ms^{-1} Area under graph: -

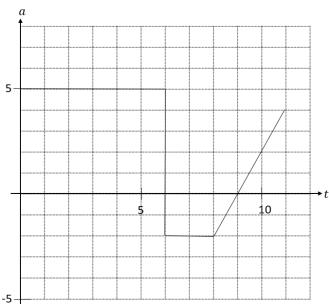
Example:


Given the displacement time graph above, find the velocity function for time $5 \le t \le 12$. Hence, find the acceleration from t=6 s to t=10 s.

(b) Velocity-time graph


Gradient of graph: acceleration, ms^{-2} Area under graph: displacement, m

Example:


Given the velocity-time graph of a moving particle above, what is the time when particle was $28\ m$ away from its' origin?

(c) Acceleration-time graph

Gradient of graph: jerk, ms^{-3} Area under graph: velocity, v

Example:

A person observes the motion of the particle at the $9^{th}\,s$ of the particle's journey from its origin. Find the velocity of the particle after 2 s from the time when the person observes the motion of particle.